
 Automatic Detection of Anomalies for Efficient Firewall Policies

Jalal M. Al-Frihat

Ministery of Education P.O.Box 1646, Amman, Jordan.
Email: jl_frihat@yahoo.com

Abstract—Firewalls are safety-critical systems that secure most private networks. An error in a firewall either leaks
secret information from its network or disrupts legitimate communication between its network and the rest of the
Internet. Firewall filtering rules have to be carefully written and organized in order to correctly implement the
security policy. In this paper, advanced techniques that provide automatic discovery of firewall policy anomalies and
anomaly-free policy editing for rule insertion and modification are presented. These techniques significantly
simplifies the management of firewall policy written as filtering rules, while minimizing network vulnerability due
to wrong configurations of the firewall rules.

1. INTRODUCTION

With the global Internet connection, network security
has gained significant attention in the research and
industrial communities. Due to the increasing threat of
network attacks, firewalls have become important
integrated elements not only in enterprize networks but
also in small-size and home networks.
A firewall is a security guard placed at the point of
entry between a private network and the outside
Internet so that all incoming and outgoing packets have
to pass through it. A packet can be viewed as a tuple
with a finite number of fields; examples of these fields
are source/destination IP address, source/destination
port number, and protocol type. By examining the
values of these fields for each incoming and outgoing
packet, a firewall accepts legitimate packets and
discards illegitimate ones according to its
configuration. A firewall configuration defines which
packets are legitimate and which are illegitimate. An
error in a firewall configuration means a wrong
definition of being legitimate or illegitimate for some
packets, which will either allow unauthorized access
from the outside Internet to the private network, or
disable some legitimate communication between the
private network and the outside Internet. Neither case
is desirable. How to design a correct firewall
configuration is therefore an important security issue.
Firewalls have been the frontier defense for secure
networks against attacks and unauthorized traffic by

filtering out unwanted network traffic coming into or
going from the secured network. The filtering decision
is taken according to a set of ordered filtering rules
written based on predefined security policy
requirements.
Although deployment of firewall technology is an
important step toward securing our networks, the
complexity of managing firewall policy might limit the
effectiveness of firewall security. A firewall policy
may include anomalies, where a packet may match
with two or more different filtering rules.
When the filtering rules are defined, serious attention
has to be given to rule relations and interactions in
order to determine the proper rule ordering and
guarantee correct security policy semantics. As the
number of filtering rules increases, the difficulty of
writing a new rule or modifying an existing one also
increases. It is very likely, in this case, to introduce
conflicting rules such as one general rule shadowing
another specific rule, or correlated rules whose relative
ordering determines different actions for the same
packet. In addition, a typical large-scale enterprise
network might involve hundreds of rules that might be
written by different administrators in various times.
This significantly increases the potential of anomaly
occurrence in the firewall policy, jeopardizing the
security of the protected network [1].
Therefore, the effectiveness of firewall security is
dependent on providing policy management techniques
and tools that enable network administrators to analyze

and verify the correctness of written firewall legacy
rules.
In this paper, a formal model for firewall rule relations
and their filtering representation is defined. This model
is used to develop an anomaly discovery algorithm to
report any anomaly that may exist among the filtering
rules. Although firewall security has been given strong
attention in the research community, the emphasis was
mostly on the filtering performance issues [2]–[4]. On
the other hand, a few related works [5], [6] attempt to
address only one of the conflict problems which is the
rule correlation in filtering policies. Other approaches
[7]–[9] propose using a high-level policy language to
define and analyze firewall policies and then map this
language to filtering rules. Although using such high-
level languages might avoid rule anomalies, they are
not practical for the most widely used firewalls that

contain low level filtering rules. This paper is
organized as follows. In Section 2 an introduction to
firewall operation is presented. In Section 3 the
formalization of filtering rule relations is described. In
Section 4 the firewall policy anomalies are defined and
classified and then the anomaly discovery algorithms
are presented. Section 5 contains the conclusions of
this paper

2. FIREWALL FUNDAMENTALS

A firewall is a network element that controls the
traversal of packets across the boundaries of a secured
network based on a specific security policy. A firewall
security policy is a list of ordered rules that define the
actions performed on network

 Table 1 Firewall filtering policy

order Protocol s_ip s_port d_ip d_port action
1 Tcp 140.191.35.20 any *.*.*.* 80 deny
2 Tcp 140.191.35.* any *.*.*.* 80 accept
3 Tcp *.*.*.* any 161.122.31.40 80 accept
4 Tcp 140.191.35.* any 161.122.31.40 80 deny
5 tcp 140.191.35.30 any *.*.*.* 21 deny
6 tcp 140.191.35.* any *.*.*.* 21 accept
7 tcp 140.191.35.* any 161.122.31.40 21 accept
8 udp 140.191.35.* any 161.122.31.40 53 accept
9 udp *.*.*.* any 161.122.31.40 53 accept

packets based on specific filtering conditions. A rule is
composed of set of filtering fields (also called network
fields) such as protocol type, source and destination IP
addresses and ports, as well as an action field. The
filtering fields of a rule represent the possible values of
the corresponding fields in actual network traffic that
matches this rule. Each network field could be a single
value or range of values. Filtering actions are either to
accept, which permits the packet into or from the
secure network, or to deny, which causes the packet to
be blocked. A “deny” default policy action is assumed.
The most commonly used matching fields are: protocol
type, source IP address, source port, destination IP
address and destination port [12], [13].
The following is the common format of packet filtering
rules in a firewall policy. The order of the rule
determines its position relative to other filtering rules
in the policy. IP addresses can be a host (e.g.
140.191.35.120), or a network address (e.g.
140.191.35.*). Ports can be either a single specific port
number, or any port number indicated by “any.” Some
firewall implementations allow the usage of non-
wildcard ranges in specifying source and destination

addresses or ports. However, it is always possible to
split a filtering rule with a multi-value field into several
rules each with a single-value field [2]. An example of
typical firewall rules is shown in Table 1.

3. FIREWALL POLICY MODELING

Modeling of firewall rule relations is necessary for
analyzing the firewall policy and designing
management techniques such as anomaly discovery
and policy editing. In this section, the model of firewall
rule relations is described.
To be able to build a useful model for filtering rules, it
is necessary to determine all the relations that may
relate packet filters. In this section we define all the
possible relations that may exist between filtering
rules, and we show that no other relation exists. We
determine these relations based on comparing the
network fields of filtering rules, independent of the rule
actions. In the next section, we consider these relations
as well as rule actions in our study of firewall rule
conflicts.

..*.* 161. 122.31.40161. 122.31.40*.*.*.*161.122.31.40

..*.*140. 191.35.**.*.*.*
140. 191.35.*140. 191.35.30

140.191.35.20

protocol

s ip d ip

s port s_port s_port s_port s_port s_port

d ip d ip d ip d ip d ip d ip

d p d p d p d p d p d p d p

80 21
80 21 80 21 80 53 53

tcp udp

161. 122.31.40

Fig. 1. The policy tree for the firewall policy from table 1.

Definition1. Rules Rx and Ry are completely disjoint if
every field in Rx is not a subset nor a superset nor
equal to the corresponding field in Ry. yCDx RR ℜ iff

[] []iRiRi yx ⊗∀ , ,where { }=⊃⊂∈⊗ ,, ,⊗ means

not ⊗, { }rt,,d_ip,d_po_ip,s_portprotocol,si∈

Definition 2: Rules Rx and Ry are exactly matching if
every field in Rx is equal to the corresponding field in
Ry. yEMx RR ℜ iff Rx[i] = Ry[i]

where { }rt,d_ip,d_po_ip,s_portprotocol,si∈

Definition 3: Rules Rx and Ry are inclusively matching
if they do not exactly match and if every field in Rx is
a subset or equal to the corresponding field in Ry. Rx is
called the subset match while Ry is called the superset
match. yIMx RR ℜ iff [] []iRiRi yx ⊆∀ , and

[] []jRjRtsj yx ≠∃ ..
where

{ }rt,,d_ip,d_po_ip,s_portprotocol,sji ∈, .
For example, in Table 1, Rule 1 inclusively matches
Rule 2. Rule 1 is the subset match while Rule 2 is the
superset match.

Definition 4: Rules Rx and Ry are partially disjoint (or
partially matching) if there is at least one field in Rx
that is a subset or a superset or equal to the

corresponding field in Ry, and there is at least one field
in Rx that is not a subset and not a superset and not
equal to the corresponding field in Ry. yPDx RR ℜ iff

[] [] [] []jRjRandiRiRtsji yxyx ⊗⊗∃ ..,
where { }=⊃⊂∈⊗ ,, ,

{ }rt,d_ip,d_po_ip,s_portprotocol,sji ∈, ji ≠
For example, Rule 2 and Rule 6 in Table 1 are partially
disjoint (or partially matching).

Definition 5: Rules Rx and Ry are correlated if some
fields in Rx are subsets or equal to the corresponding
fields in Ry, and the rest of the fields in Rx are
supersets of the corresponding fields in Ry. yCx RR ℜ

iff [] []iRiRi yx ⊗∀ , and

[] [] [] []kRkRandjRjRtskj yxyx ⊃⊂∃ ..,
where { }=⊃⊂∈⊗ ,,

{ }rt,,d_ip,d_po_ip,s_portprotocol,skji ∈,,
kj ≠ . For example, Rule 1 and Rule 3 in Fig. 1 are

correlated.
The following theorems show that these relations are
distinct, i.e. only one relation can relate Rx and Ry, and
complete, i.e. there is no other relation between Rx and
Ry could exist.

Theorem 1: Any two k-tuple filters in a firewall policy
are related by one and only one of the defined
relations.

Theorem 2: The union of these relations represents the
universal set of relations between any two k-tuple
filters in a firewall policy.

The firewall policy is represented by a single-rooted
tree called the policy tree. The tree model provides a
simple representation of the filtering rules and at the
same time allows for easy discovery of relations and
anomalies among these rules. Each node in a policy
tree represents a network field, and each branch at this
node represents a possible value of the associated field.
Every tree path starting at the root and ending at a leaf
represents a rule in the policy and vice versa. Rules
that have the same field value at a specific node will
share the same branch representing that value.
Fig. 2 illustrates the policy tree model of the filtering
policy given in Table 1. Every rule should have an
action leaf in the tree.
The basic idea for building the policy tree is to insert
the filtering rule in the correct tree path. When a rule
field is inserted at any tree node, the rule branch is
determined based on matching the field value with the
existing branches. If a branch exactly matches the field
value, the rule is inserted in this branch, otherwise a
new branch is created. The rule also propagates in
subset or superset branches to preserve the relations
between the policy rules.

4 . FIREWALL ANOMALY DISCOVERY

The ordering of filtering rules in a centralized firewall
policy is crucial in determining the filtering policy
within this firewall. This is because the packet filtering
process is performed by sequentially matching the
packet against filtering rules until a match is found. If
filtering rules are disjoint, the ordering of the rules is
insignificant. However, it is very common to have
filtering rules that are inter-related. In this case, if the
related rules are not carefully ordered, some rules may
never be used because of other rules, resulting in an
incorrect policy. Moreover, when the policy contains a
large number of filtering rules, the possibility of
writing conflicting or redundant rules is relatively high.
An firewall policy anomaly is defined as the existence
of two or more filtering rules that may match the same
packet or the existence of a rule that can never match
any packet on the network paths that cross the firewall.
Different anomalies that may exist among filtering
rules in one firewall could be classifyed as follows

Here, some possible firewall policy anomalies are
described.

1) Shadowing anomaly. A rule Ry is shadowed by rule
Rx if one of the following conditions holds:

Rx[ord]<Ry[ord]; yEMx RR ℜ ;Rx[action]•Ry[act
ion]
Rx[ord]<Ry[ord]; xIMy RR ℜ ;Rx[action]•
Ry[action]

For example, Rule 4 in shadowed by Rule 3 in Table 1.
Shadowing is a critical error in the policy. This might
cause an accepted traffic to be blocked or a denied
traffic to be permitted. If there is an inclusive or exact
match relationship between two rules, the superset (or
general) rule should come after the subset (or specific)
rule. It is important to discover shadowed rules and
alert the administrator to correct this error by
reordering or removing these rules.

2) Correlation anomaly: A rule Rx and rule Ry have a
correlation anomaly if the following condition holds:

yCx RR ℜ and Rx[action] • Ry[action]

Rule 1 is in correlation with Rule 3 in Table 1. The two
rules with this ordering imply that all HTTP traffic that
is coming from 140.191.35.20 and going to
161.122.31.40 is denied. However, if their order is
reversed, the same traffic will be accepted. Correlation
is considered an anomaly warning because the
correlated rules imply an action that is not explicitly
stated by the filtering rules. Therefore, in order to
resolve this conflict, we point out the correlation
between the rules and prompt the user to choose the
proper order that complies with the security policy
requirements.

3) Generalization anomaly: A rule is a generalization
of a preceding rule if they have different actions, and if
the first rule can match all the packets that match the
second rule. The rule Ry is a generalization of rule Rx
if the following condition holds:

Rx[ord]<Ry[ord]; yIMx RR ℜ ;Rx[action]•
Ry[action]

Rule 2 is a generalization of Rule 1 in Fig. 1.
Generalization is often used to exclude a specific part
of the traffic from a general filtering action. It is
considered only an anomaly warning because the
specific rule makes an exception of the general rule.

This might cause an accepted traffic to be blocked or a
denied traffic to be permitted, and thus it is important
to highlight its action to the administrator for
confirmation.

4) Redundancy anomaly: A rule is redundant if there is
another rule that produces the same matching and
action such that if the redundant rule is removed, the
security policy will not be affected. Formally, rule Ry
is redundant to rule Rx if one of the following
conditions holds:

Rx[ord]<Ry[ord]; yEMx RR ℜ ;Rx[action]=Ry[act
ion]
Rx[ord]<Ry[ord]; xIMy RR ℜ Rx[action]=Ry[actio
n]

Referring to Fig. 1, Rule 7 is redundant to Rule 6, and
Rule 9 is redundant to Rule 8. Redundancy is
considered an error in the firewall policy because a
redundant rule adds to the size of the filtering rule list,
and therefore increases the search time and space
requirements of the packet filtering process [15. It is
important to discover redundant rules so that the
administrator can decide whether to keep these rules,
modify their filtering actions, or remove them from the
policy.

5) Irrelevance anomaly: A filtering rule in a firewall is
irrelevant if this rule does match any traffic that may
flow through this firewall. This rule has no effect on
the filtering outcome of this firewall. Formally, rule Rx
in firewall F is irrelevant if:

{ }Rx[dest]to Rx[src] from path a on node a isn :n∉F

Irrelevance is considered an anomaly because it adds
unnecessary overhead to the filtering process and it
does not contribute to the policy semantics.

It is assumed that any two rules, Rx and Ry, are in the
same firewall and Ry follows Rx. For simplicity, the
address and port fields are integrated in one field for
both the source and destination.
Initially no relationship is assumed. Each field in Ry is
compared to the corresponding field in Rx starting with
the protocol, then source address and port, and finally
destination address and port. The relationship between
the two rules is determined based on the result of
subsequent comparisons. If every field of Ry is a
subset or equal to the corresponding field in Rx and
both rules have the same action, Ry is redundant to Rx,
while if the actions are different, Ry is shadowed by
Rx.

If every field of Ry is a superset or equal to the
corresponding field in Rx and both rules have the same
action, Rx is potentially redundant to Ry, while if the
actions are different, Ry is a generalization of Rx. If
some fields of Rx are subsets or equal to the
corresponding fields in Ry, and some fields of Rx are
supersets to the corresponding fields in Ry, and their
actions are different, then Rx is in correlation with Ry.
Irrelevance anomalies can be discovered simply by
verifying that each rule in the policy matches a source
and a destination address that lie on a path controlled
by the firewall. If none of the preceding cases occur,
then the two rules do not involve any anomalies.
The basic idea for discovering anomalies is to
determine if any two rules coincide in their policy tree
paths. If the path of a rule coincides with the path of
another rule, there is a potential anomaly that can be
determined based on the firewall anomaly definitions.
If rule paths do not coincide, then these rules are
disjoint and they have no anomalies.
The algorithm can be divided into two phases: the state
transition phase and the state termination phase.
The transition routine is invoked upon inserting every
rule in the policy tree. If the field of the current rule
matches an already existing rule branch, then the next
relation state is determined.
The algorithm is executed iteratively to let the rule
propagate in existing branches and check the remaining
fields. As the rule propagates, the relation state is
updated until the final state is reached. If there is no
match for a field value, the relation state is set to
disjoint.
The termination routine is activated once all the rule
fields have been matched and the action field is
reached. If the rule action coincides with the action of
another rule on the tree, an anomaly is discovered. At
that point the final anomaly state is determined and any
anomalies are reported together with the rules
involved.
Applying the algorithm on the rules from Table 1, the
discovered anomalies are marked in the dotted boxes at
the bottom of the policy tree in Figure 2. Shadowed
rules are marked with a triangle, redundant rules with a
square, correlated rules with a pentagon and
generalization rules with a circle.
The firewall anomaly discovery algorithm has as inputs
rule and branch and as output the anomaly and has the
following structure:

 for each field ∈ rule.f ields do
 if field ≠ ACTION then
 {find transition states algorithm}
 else
 {find termination state algorithm}
 end for

The transition states algorithm is as follows:
 relation ← UNDETERMINED
 if branch = field then {exact match}
 if relation = UNDETERMINED then
 relation ← EXACT
 end if
 else if field ⊃ branch then {superset match}
 if relation∈ { SUBSET, CORRELATED}then
 relation ← CORRELATED
 else if relation ≠ DISJOINT then
 relation ← SUPERSET
 end if
 else if field ∈ branch then {subset match}
 if relation∈ { SUPERSET, CORRELATED}then
 relation ← CORRELATED
 else if relation ≠ DISJOINT then
 relation ← SUBSET
 end if
 else { not matching}
 relation ← DISJOINT
 end if
branch ← branch.next

The termination state algorithm has the following
structure
anomaly ← NOANOMALY
if relation ≠ DISJOINT then
 if relation=CORRELATED and field ≠ branch then
 anomaly ← CORRELATION
 else if relation = SUPERSET then
 if field = branch then {similar actions}
 anomaly ← REDUNDANCY
 else {different actions}
 anomaly← GENERALIZATION
 end if
 else if relation ∈ { EXACT, SUBSET} then
 if field = branch then {similar actions}
 anomaly ← REDUNDANCY
 else {different actions}
 anomaly← SHADOWING
 end if
 end if
 end if
end if

5. CONCLUSIONS

Firewall security, like any other technology, requires
proper management to provide the proper security
service. Thus, just having a firewall on the boundary of
a network may not necessarily make the network any
secure. One reason of this is the complexity of

managing firewall rules and the potential network
vulnerability due to rule conflicts.
In this paper all possible firewall rule relations were
defined and used to classify firewall policy anomalies.
The firewall rule information and relations were
modelled in a tree-based representation. Based on this
model and formalization, were developed algorithms
for anomalies detection. The future work includes
extending the proposed anomaly discovery techniques
to handle distributed firewall policies.

REFERENCES

[1] E. Al-Shar and H. Hemed. “Firewall Policy Advisor for
Anomaly Detection and Rule Editing.” Proc.of IEEE/IFIP
Integrated Management Conference (IM’2003), March 2003.
[2] L. Qiu, G. Varghese, and S. Suri. “Fast Firewall
Implementations for Software and Hardware-based Routers.”
Pro. of 9th Int. Con. on Network Protocols (ICNP’2001),
November 2001.
[3] V. Srinivasan, S. Suri and G. Varghese. “Packet
Classification Using Tuple Space Search.” Computer ACM
SIGCOMM Communication Review, October 1999.
[4] T. Woo. “A Modular Approach to Packet Classification:
Algorithms and Results.” Proceedings of IEEE
INFOCOM’00, March 2000.
[5] D. Eppstein and S. Muthukrishnan. “Internet Packet Filter
Management and Rectangle Geometry.” Proceedings of
12th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), January 2001.
[6] B. Hari, S. Suri and G. Parulkar. “Detecting and
Resolving Packet Filter Conflicts.” Proceedings of IEEE
INFOCOM’00, March 2000.
[7] Y. Bartal, A. Mayer, K. Nissim and A. Wool. “Firmato: A
Novel Firewall Management Toolkit.” ”Proc. of 1999 IEEE
Symposium on Security and Privacy, May 1999.
[8] A. Mayer, A. Wool and E. Ziskind. “Fang: A Firewall
Analysis Engine.”Proceedings of 2000 IEEE Symposium on
Security and Privacy, May 2000.
[9] A. Wool. “Architecting the Lumeta Firewall Analyzer.”
Proc. of 10th USENIX Security Symp., Aug. 2001.
[10] D. Chapman and E. Zwicky. Building Internet
Firewalls, Second Edition, Orielly & Associates Inc., 2000.
[11] W. Cheswick and S. Belovin. Firewalls and Internet
Security, Addison- Wesley, 1995.
[12] S. Cobb. “ICSA Firewall Policy Guide v2.0.” NCSA
Security WhitePaper Series, 1997.
[13] J. Wack, K. Cutler and J. Pole. “Guidelines on Firewalls
and Firewall Policy.” NIST Recommendations, SP 800-41,
January 2002.
[14] E. Al-Shar and H. Hemed. “Design and Implementation
of Firewall Policy Advisor Tools.” CTI-TR-02-016, 2002.
[15] R. Panko. Corporate Computer and Network Security,
Prentice Hall, 2003.
[16] S. Hazelhusrt. “Algorithms for Analyzing Firewall and
Router Access Lists.” Technical Report TR-WitsCS-1999,
Dept. of Computer Science, Univ. of the Witwatersrand,
South Africa, July 1999.
[17] J.Al-Frihat “Advanced Queue Management Algorithms
for Computer Networks”, Studies in Informatics and
Control, vol 14, Nr.2, June, 2005.

	Automatic Detection of Anomalies for Efficient Firewall Policies

